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Abstract 

We second quant ize  a relativistic Schr6dinger equat ion involving a Hamil tonian H that  
describes free spin-½ particles and tha t  depends  on a parameter  G. We require a positive 
definite metr ic  and a positive definite energy in the Fock  space in which  the  field qJ (x, t) 
and its adjoint  operate. If  G = ±i, one obtains the  usual second-quantized Dirac theory ,  
but  for real values of  G one has  Bose statistics. Whereas the  an t i commuta to r  [~(x,  t ) ,  
~*(x ' ,  t ' ) ] .  vanishes for a Dirac field when the interval between (x, t) and (x', t') lies 
outside the light cone, when G is real the c o m m u t a to r  [¢ (x ,  t), ~ *(x ' ,  t ' )]_ vanishes for 
such points.  

t. Introduction 

In an earlier paper (Guertin, 1975b), we studied a Schr6dinger equation 
involving a Hamiltonian that is a second-order differential operator, describes 
free spin-½ particles with both energy signs and a definite mass, and depends 
on a parameter G. By setting G = -+i one obtains the usual Dirac Hamiltonian, 
but for real values of G the one-particle theory possesses an indefinite metric; 
thus, negative energy states have a negative normalization, as in the Sakata- 
Taketani spin-0 and spin-1 Hamiltonian theories (Sakata & Taketani, 1940; 
Heitler, 1943) and their arbitrary spin generalizations (Guertin, 1974, 1975a). 
In this paper we second-quantize the theory using Bose statistics for real 
values of G and find that, for such values of G, the commutator of the field 
and its adjoint vanishes when the interval between their space-time arguments 
is spacelike. 

The Hamiltonian of interest is the four by four matrix operator (Guertin, 
1975b) 

H =  (P3 + iP2)( 1 + G Z)(P2 /2m) + iGpl a " P + p3m (1.1) 

where G is a constant that is either real or is equal to -+i, p = - i V ,  p = [ p I, 
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406 RALPH F. GUERTIN 

and m > 0 is real. It  satisfies the relativistic energy-momentum relation 

H 2 = E  2 (1.2a) 

where 

E = (p2 + m2)1/2 (1.2b) 

and describes free spin-½ particles having both energy signs. Furthermore,  

H =MH'~M (1.3) 

where one employs the positive definite metric M = I if G = +-i, in which case 
H is just the Dirac Hamiltonian, but uses the indefinite metric M = P3 if G is 
real. The wave function ~(x, t) is assumed to satisfy the Schr6dinger equation 

i3 ~/3t = H~ (1.4) 

Although (1.4) cannot be manifestly covariant for real values of  G, it was 
demonstrated that it can be made invariant under proper orthochronous 
Poincar6 transformations. Under a space translation d the wave function goes 
into 

ff'(x, t) = (1 - ip" d)~k(x, t) (1.5a) 

and under a time translation D it goes into 

¢ ' (x ,  t) = (1 + iDH) if(x, t) (1.5b) 

As a result of  a rotation by an angle I 0 [ about the direction 0 / i 01 one has 

~ ' (x ,  t) = (1 - in .  J) if(x, t) ( l .6a)  

where the angular momentum J has the form 

J = x x p + i½a (1.6b) 

Finally, under an infinitesimal boost one obtains 

~k'(x, t) = (1 + iX' K)i f (x ,  t) (1.7a) 

where X is a real parameter and where K, the boost generator, can be written 

K =  ½ [ x , H ] + + r  (1.7b) 

Here r = 0 for G = +i, the familiar result for the Dirac theory (Foldy, 1956, 
Fuschich et al. t971;  Kolsrud, 1971; Guertin, 1974, 1975a). But, for real 
values of  G the operator r ,  a complicated function of the mass, the momentum,  
the spin, and the p matrices, is not even uniquely determined; the freedom in 
choosing two other real parameters O±(p) on which r depends allows an infi- 
nite number of possibilities for r ,  none of  which, in contrast to H, appears to 
be a local operator. 1 I f  one could, at least for one value of G, find functions 
O+(p) such that  r is a local operator, this would yield a criterion for uniquely 

1 See equations (6.1b)and (6.5)of Guertin (1975b). 
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determining r ,  but the author has not been able to demonstrate that it is pos- 
sible to do so. 

It has been shown (Guertin, 1975b) that the theory is charge conjugation 
invariant. Under this symmetry operation ~(x, t) goes into 

where B may be set equal to 

if G = -+i and to 

if G is real. Here 

~O'(x, O = B~*(x, t) (1.8) 

BO) = p2c (1.9a) 

B (2) = p l  c (1.9b) 

c = exp( -  #r½o2) (1.10) 

We also saw that the theory is invariant under the CPT transformation, in 
which case ¢(x, t) goes into 

~'(x, t) = pl ~ ( - x ,  - 0  (1.11) 

In addition, we discussed the reasons why we do not choose to interpret the 
theory as being separately invariant under space inversion and under charge 
conjugation for real values of G, even though both are symmetries for the 
Dirac theory. 

The solution ~(x, t) of (1.1) and (1.4) is found in Section 2 of this paper, 
and the result is second quantized in Section 3. It is found that, in order for 
the free particle and antiparticle states created from the vacuum to have both 
a positive definite metric and a positive definite energy, one must employ Bose 
statistics when G is real, even though Fermi statistics is required for the Dirac 
theory. Finally, in Seciton 4 it is demonstrated that for real values of G the 
commutator [¢(x, t), ¢*(x',  t')] _ vanishes for a spacelike interval between 
(x, t) and (x', t'), in contrast to the vanishing of the anticommutator [¢(x, t), 
$*(x', t')] + for such points when G = -+i. We cannot conclude that this result 
actually leads to a local theory for real values of G, because we are unable to 
demonstrate at this time that one can actually construct from the field and its 
adjoint observables that commute when the interval between their space-time 
arguments Lies outside the light cone. 

2. Solutions of" the SchrOdinger Equation 

To construct explicit solutions of the Schr6dinger equation (t .4) in the 
single particle theory it is useful to know the generalized Foldy-Wouthuysen 
(FW) operator for the Hamiltonian (1.1). This operator, W, is such that 
(Guertin, 1975b). 

H = WHF W-I  (2.1 a) 
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where 

HF = p3E (2. lb) 

is the Hamiltonian in the Foldy canonical representation (Foldy, 1956). 
Furthermore, 

W -a = MW*M (2.2) 

In writing down the most general form of the generalized FW operator, it 
is convenient to note that (Guertin, 1975b) 

It= E HuApX (2.3a) 
~z 

He =(03 + iP2)(1 +GZ)(p2/2m)+-iGOlp+p3m (2.3b) 

and where 

A~ +- = ½ (1 _+ a -i o) (2.4) 

with/5 = p/p, are helicity projection operators. Then W can be written 2 

W= E W~A~" (2,5) 

where 

W+ = ~2± exp(-i0+p3) (2.6a) 

with 

~2+ = m {E(E + m) [(1 + GZ)E + (1 - GZ)m] } -1/2 (E + H+P3) (2.6b) 

on p and are subject only to the restrictions 

O'+(p) = -Ok(p)  (2.7a) 

0'+ (0) = 0 (2.7b) 

0+(0) .  0_(0) (2.7c) 

with the property 

Then, 

We are free to adjust the phase so that 0e(0) = 0 and to define a new function 

O'(p) = +-O" (p) (2.8a) 

0-(0) = 0 (2.8b) 

W± = f2+ exp (~- iOp3) (2.9) 

2 The funct ions  O+(p) tha t  appear in the expression for W are the same ones that  we 
ment ioned  in Section 1 while discussing the boos t  generator.  

I fG  = -+i, in which case one has the Dirac theory, then 0+ and 0_ are equal and 
independent o fp  and may be set equal to zero, but if G is real they may depend 
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The Foldy canonical wave function ffF is related to the wave function 
in (1.4) as follows: 

= W ~ F  (2.10)  

and one can write 

where 

~F = CY + ~_F (2.1 ta) 

~+_y = ½(1 + p3)~ F (2.1 lb) 

is such that ~+F contains only positive energies and ~ F  only negative 
energies. Similarly, as a result of (2. l a) and the above, 

¢ = ~+ + ~_ (2.12a) 

where 

is such that 

~+ = ½(1 _+ H/E) ~ (2.12b) 

@+ = W~+ F (2. I2c) 

The explicit construction of solutions to (1.4) involves the same procedure 
employed for other Hamiltonians (Guertin, 1975a). One may write 

t~+(x, t) = (27r)3/------- ~ d3q Ue(a)(cOa+_(O)(q)ei(q'x ~e(q)t) (2.13) 

where 

u+_ w(q)½0 ---p3)× <°> (2.14a) 

Here, X(e), where o = -+½, is a four-component column matrix whose elements, 
labeled by/l  = 1 , . . . ,  4 satisfy 

Xu (a) = 6a,3/2-u + 6c,,7/2-u (2.14b) 

The normalization is 

u+(O')t(q)Mu+_(CO(q) = I 6~a' i fM=I  (2.15a) 

[+-Soa' i fM = p 3  

u~ (a')t(q)Mu+ (e)(c 0 = 0 (2. t 5b) 

Let us recall that the scalar product is 

( t~, 1~/)34 = f d S x ~ J ' (  x,  t)M$(x, t) (2.16a) 
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and that the expectation value of any observable d) is 

(4,  d ~  )M = f d 3x~Ot(x, t)M(_9. ~(x, t) 

When one evaluates (2.16a) the result is 

(2.16b) 

t fd3q ~ [a+(a)*(q)a+(g)(q) + a(O)*(q)a_(O)(q)] i fM = I  

( f  d3q • [a+(a)*(q)a+(a)(q)- a_(a)*(q)a_(°)(q)] i f M  = P3 
a (2.17a) 

and one also finds that 

( f daqE(q) Z [a+(CO*(q)a+(a)(q)- a_(CO*(q)a_(°)(q)l i fM = I  

(~,H~)M = ~ [ fdaqE(q ) ~ [a+(O),(q)a+(a)(q) + a_(a),(q)a_(a)(q) ] if M =  P3 
o 

(2.17b) 

In considering charge conjugation invariance [see equations (1.8)-(1.10)], 
it is useful to know certain properties of the momentum space solutions 
u+ (a)(q), where the subscript designates the sign of the energy. According to 
(2.5)-(2.7) and (2.14), 

Bu(Cr)*(q) = 7  ~, c-o l'u(a')(-q) (2.18a) 
17 

Bu(a)*(q) = r~* Y. e~,u(+~')(-q)  (2.18b) 
O r 

where 

il i fG = -+i 
r~ = if G is real 

This result will be employed in the next section. 

(2.19) 

3. Second Quantization 
To second quantize the theory developed so far, it is first convenient to make 

the identification 

a(+°)(q) = a(a)(q) (3. i a) 

a(+ ~)*(q) = a (°)*(q) (3. lb) 

a(f)(q) = ~ ca~,b(°')*(-q) (3.1c) 
a 

a(f)*(q) = ~ coa,b(°')(-q) (3.1d) 
{7' 

where an asterisk now denotes Hermitian conjugation in the Fock space in 
which these operators act. We also write 

u(+°)(q) = u(°)(q) (3.2a) 
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u(f)(q) = ~ cecr,v(O')(-q) (3.2b) 
(7 

and from (2.12) and (2.13) we have for the field operator 

lj ~(x, t) = (2rr)3/2 d3q ~ [u(e)(q)a(a)(q)e i[q'x-E(q)tl 

+ v(a)(q)b(O),(q)e- i [q. x-E(q)r ]] 

(3.3) 

We make the usual assumption (e.g., Weinberg, t 964; Nelson & Good, 1968; 
Mathews, 1971) that a(a)(q) and b(~)(q) are the annihilation operators for a 
particle and its antiparticle, respectively, and that a(a)*(q) and b(O)*(q) are the 
corresponding creation operators; the vector space on which these operators 
act has a positive definite metric (for the possibility of using states with an 
indefinite metric see, e.g., Pauli, 1950; Nagy, t966). The operators a(~)(q), 
and b(°)(q) annihilate the vacuum state l 0 } and one has one of the two possibilities 

[a(")(q), a(°')*(q')] _+ = [bt")(q), bt"%*(q')] ± = aoo,6(q - q') (3.4a) 

[ata)(q), a(a')(q')] _+ = [b(a)(q), b(a')(q')] + = [a(~)*(q), at~')*(q')] + 

= [b(a)*(q), b(°')*(q')] + = 0 (3.4b) 

[a(a)(q), b(°')(q')] + = [a(~)(q), b(Cr')*(q')] ± = [a(O)*(q), b(O')*(q')] +_ 

= [a(°)*(q), b(a')(q')] + = 0 (3.4c) 

The upper sign yields Fermi statistics and the lower sign Bose statistics. 
The scalar product in (2.16a) and (2.17a) becomes the charge operator 

0 = Y d 3x ~*(x, t)M~(x, t) - y d 3x (01 ~*(x, t)M~(x, t) t O> 

= f c t 3 x :  ~*(x, t)gC,(x, t): (3.5a) 

and (2.17b) yields the field theory Hamiltonian 

/ t  = f d3xfft(x,  t)MH~(x, t) - f d3x(Ol t~t(x, t)MH~(x, 010) 

= f d3x: ~?(x, 0MH~(x,  t): (3.5b) 

where the infinite vacuum expectation terms have been subtracted. These 
expressions give the momentum space results 

fd3q ~ [a(Cr)*(q)a(°)(q) + b(a)(q)b(O)*(q) - (0 [ b(~)(q)b(O)*(q) I0)] 

(2 = 4  i fM = I (3.6a) 

L d3q ~ [a(")*(q)a(°)(q)-  b(~)(q)b(~)*(q) + (0Ib(~)(q)b(a)*(q)[0)] 

if M =  P3 (3.6b) 
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and 

fd3qE(q) ~ [a(g)*(q)a(°)(q) - b(O)(q)b(~)*(q) 

= i fM = I (3.7a) 

[f d3qE(q) ~o [a(~)*(q)a(e)(q) + b(°)(q)b(°)*(q) 

- (0I  b(a)(q)b(°)*(q)10)] i fM = P3 

(3.7b) 

In order for the energy of the states created by the operators a(a)*(q) and 
b(O)*(q) to be positive definite one must choose the anticommutator in (3.4) 
when M = I and the commutator when M = P3. Then, for either metric one has 

0_. = f d3q ~ [a(°)*(q)a(°)(q) - b(°)*(q)b(CO(q)] (3.8a) 
17 

I~ = f d3qE(q) ~ [a(°)*(q)a(~)(q) + b(°)*(q)b (°)'(q)] (3.8b) 
o 

For G = -+i, in which case (1.1) is the Dirac-Hamiltonian, one has the familiar 
second quantization using Fermi statistics, but for real values of G we find 
that the theory is second quantized using Bose statistics. 

The operator /7  is the generator of  time translations in the second-quantized 
theory. One can similarly obtain the three-momentum 1 ~, the angular momen- 
tum J, and the boost operator I~ from the expressions for the expectation 
values of the corresponding operators in the single-particle theory 

= fd3x: ~?(x,  t)Mp~b(x, t): (3.9a) 

J= fd3x: ff*(x, t )MJ~(x,  t): (3.9b) 

K= fd3X: ~*(x, t )MK6(x,  t): (3.9c) 

where, as in (3.5), we use 

: ff.tg0~: = ~tg)@ - <01 ~t(9~ t 0> (3.10) 

for any operator (9. Then, for infinitesimal proper orthochronous Poincar~ 
transformations one should have, corresponding to (1.5)-(1.7), 

(l +id'p)~(x,t)(1-id'~)=(1-id.p)~(x,t)  (3 . t l a )  

(1 - iDS)~(x ,  t)(1 + iD/1) = (1 +IDH)~(x,t) (3.11b) 

(1 + i 0 ' ] ) ~ ( x ,  t)(1 - i0" ]') = (1 - i0" J)ff(x, t) (3.11c) 

(1-iX.IYO~(x,t)(l+iX.[()=(l+iX.K)~(x,t) (3.1 ld) 

The above relations may be verified from (3.8) and the corresponding momentum 
space expressions obtained from (3.9), or directly from the results of  the next 
section for [if(x, t), ~(x',  t)] _+ and [if(x, t), ~9*(x', t)] +. 

+ ( 0 1 b(a)(q)b(a)*(q) [ 0)] 
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According to (1.8) the charge conjugation operator @ should transform the 
field as follows: 

~?~,(x, t ) ~  -~ = B~,*(x, t) (3.12) 

where B is given by (1.9). Because of (2.18), (2.19), and (3.2) one has 

Bu(a)*(q) = Vv(a)(q) (3.13a) 

By (a),(q) = _ r~,u(~)(q) (3.13b) 

so, from (3.3) it follows that 

1 ~" 3 
~ff(x,  t ) ~  -1 = ~-,,) , J ~ | d  q [~u(a)(q)b(°)(q)ei(q Dx ~E~q~t ~ 

Consequently, 

- r~*v (°)(q)a(a) *(q) e - i (q  "x-E (q) t) ] 

CgTa(a)(q)C~-I = v/b(a)(q) 

~b(a) (q)~- I  = -r/a(a)(q) 

Thus, we have the interesting property 

~2a(a)(q)q~-2 = a(~)(q) 

i fG = +i, but 

if G is real. 

~2a(Z ) (q )~-2  = _a(~)(q) 

(3.14) 

(3.15a) 

(3.15b) 

(3.16a) 

(3.16b) 

4. Locality 

For the fields introduced in the preceding section one has, as a result of 
(3.3) and (3.4), 

[~(x, t), ~(x', t')] + = 0 (4.1a) 

if G = -+i and 

[~(x, t), ~(x', t')] _ = 0 (4.1b) 

if G is real. In manifestly covariant theories a quantized field is said to be 
local (e.g., Streater and Wightman, 1964; Wightman, 1973) if, in addition to 
(4.1a), 

[~(x, t), ¢*(x',  t')] + = 0 (4.2a) 

or if, in addition to (4.1 b), 

[~(x, t), ff*(x', t')] _ = 0 (4.2b) 
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whenever the interval between the space-time points (x, t) and (x' ,  t ')  is spacelike. 
For the Dirac field (our case G = +/), (4.2a) is valid for intervals outside the light 
cone; in the following we shall demonstrate that, for our nonmanifestly covariant 
equation with real values of  G (4.2b) is valid. 

According to (3.3) and (3.4), one has, for r, s = 1,2,  3, 4, 

[¢,r(x, t), ~,F(x', t')] + 

-(~-~)3 f a3q ~ [u¢~)*(q)u(J)*(q) eiq '(x-x) 'e- iE(q)(t-r ' )  

+- v(rV)(q)v(J)*(q)e-iq'(x-X')e iE(q)(t-r')] (4.3) 

With the aid of (2.1 a), (2.2), (2.14), and (3.2) we find that 

ur(O)(q)u(a)*(q) = ~ {[E(q) + H(q)]M}rs (4.4a) 
2E(q) 

~ v¢O)(q)v(O)*(q) = eM 
2E(q) 
- -  {[E(q) - H ( - q ) ] M } r  s (4.4b) 

where 

1 i f M = I  
= (4.5) 

e~¢, --1 if  M =  t93 

When (4.4) is substituted into (4.3) the result is 

D ~ ( x ,  0 ,  * ' ~ ( x ,  t ' ) ]  +_ 

= i ~7 rs 2(2rr) 3 J E ( q )  

T- eMe-iq "(x - X')eiE(q)(t-  t ') } (4.6) 

For the cases we are considering (i.e., the ant icommutator  when G = +i and 
the commuta tor  when G is real), one has ~eM = -- 1, so, as is well known (e.g., 
Pauli, 1940) the integral on the right-hand side of  (4.6) vanishes when the 
interval between (x, t) and (x', t') lies outside the light cone; since the operator 
iO/3t + H ( - i  V )  is local the right-hand side of  (4.6) vanishes for such points. 
Thus, for real values of  G the commutator  of  the field and its adjoint vanishes 
if the interval between their arguments is spacelike, and one can consider the 
theory to be local in this sense. 

Before proceeding, let us comment  that for equal times (4.6) becomes 

t~ s ( x ,  t ')] = Mrsf(X - x')  (4.7) [ffr(X,t), * ' + 

It is now a simple matter  to verify equations (3.11), using the definitions (3.5b) 
and (3.9) for the generators of  proper orthochronous Poincar~ transformations 
and also using (4.1) and (4.7). 
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We must be cautious about concluding that one can actually base a local 
theory on our equation with real G, because the locality requirement (4.1) for 
the fields is generally made for manifestly covariant theories. 3 In such theories 
one can construct observables from the fields and a finite number o f  their 
derivatives, so (4.1) and (4.2) are sufficient conditions for two such observables 
to commute when the interval between their arguments lies outside the [ight 
cone. It  is not clear whether one can construct observables with the desired 
property for the theory developed here for real values of  G, particularly since 
the boost generator K in the single-particle theory apparently is not  local. As 
an illustration of  the problems involved, one can consider the possibility of 
finding a local four-current whose fourth component,  when integrated over 
all space, is equal to the charge operator (3.6a). 

It has been shown (Guertin, 1975b) that for real G the continuity equation 

8p/St = - V . j  (4.8) 

is satisfied by 

p = 1: [(V~)tP3(U~) + (U¢)tP3(V~)] : (4.9a) 

j = - [i(1 + GZ)/4rnl : [ (V~)?( t  + pl)(VU•') + (U~)?(1 + p l ) (VV~)  

- -  ( V U I ] / ) * ( 1  + p l ) ( V l ] 2 )  - (vg~)Y(1 + p l ) ( U @ ) ]  : 

- ½G:[(V~)?p2o(V~J) + (U~)?p2n(V¢)]: (4.9b) 

for any choice of operators U and V with the properties 

[U,H] _ :  IV, H] _ = 0 (4.10a) 

V? P3U + Ut  pa V = 2p3 (4.10b) 

Then, 

i d 3xp(x, t) = ~ (4.11) 

as desired, and, if U and V are local operators, the relations 

[p(x, t), p(x' ,  t ')] _ = 0 (4.12a) 

[j(x, t),j(x' ,  t ')] _ = 0 (4.12b) 

[ p ( x ,  t ) , j ( x ' ,  t ' ) ]  _ = 0 (4.12c) 

are certainly satisfied whenever the interval between (x, t) and (x',  t ') is space- 
like. But, in general, and in particular for U = V = 1, p and j are not the com- 
ponents of  a four-vector and cannot be a satisfactory charge and current density. 
A question which the author is unable to answer at this time is whether one 
can find a U and a V such that p and j have all the desired properties. 

3 In fact,  the reason tha t  the  vanishing of  the c o m muta to r  (4.2b) outside the light cone 
for real values of  G does not  contradict  the  usual proofs  of  the  connect ion between 
spin and statistics (e,g,, Pauli, 1940; Strea~er and Wightman,  1964) is that  manifest  co- 
variance of  the  fields has  been one o f  the  assumpt ions  upon  which such proofs  have 
been based. 
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5. Summary  

We have second quantized the Schr6dinger equation (1.4) using the Hamil- 
tonian (1.1) for massive spin-½ particles, subject to the condit ions that  there 
be both  a positive definite metric and a positive definite energy in the Fock  
space in which the field and its adjoint operate. In contrast  to the case G = -+i 
(the Dirac equation),  it was concluded that for real values of  G one should 
employ Bose statistics, and it was then found that the commuta tor  of  the 
field and its adjoint vanishes when the space-time interval between their argu- 
ments lies outside the light cone. 

The question as to whether one actually can construct a local field theory 
remains unanswered, because we have been unable to demonstrate that there 
exist observables that  commute outside the light cone. I t  may happen that a 
satisfactory theory is possible for particular real values of  G and for particular 
values of  the variable O(p) in (2.8) and (2.9). Even if the above problem can 
be treated in an acceptable manner,  one must still consider the possibili ty of  
inconsistencies when interactions are introduced,  a problem that  exists even 
in the case of  manifest ly covariant equations (e.g., Wightman, 1971, 1972, 
1973). 
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